来源:高分子科学前沿|
发表时间:2024-05-15
点击:2883
双折射是指一束光波入射到光学非均质体时,分解为两束偏振方向互相垂直的线偏振光的现象,两束光线折射率的最大差值(Δn)即为双折射率。双折射晶体是制备偏振器、光隔离器、环形器以及相位延迟器等光电调制器件的关键材料,被广泛的应用于激光偏光技术、光通讯、偏光信息处理、高精度光学器件等领域。双折射晶体的双折射率越大,越容易在更微小的尺度上实现对光的偏振态的调控,因而寻找双折射率大的光学材料对于器件的微型化十分重要。近年来,传统体块双折射晶体的设计与合成取得了快速发展,但其尺寸却限制了在微纳光学领域的应用。相较之下,具有各向异性光学特性和纳米级厚度的低维材料在双折射光学材料领域越来越受到人们关注。
纤维红磷是单质磷的一种同素异形体,作为一种新发现的准一维范德华晶体,其独特的结构和优异的电学和光学性能引起了人们研究兴趣。然而,由于样品制备方法以及尺寸受限,尽管其表现出超乎寻常的光学各向异性,目前仍缺乏对纤维红磷复折射率,特别是平面内双折射率实验测定的深入研究。
基于此,清华大学化学系严清峰团队在前期成功实现衬底上直接生长具有(001)择优取向纤维红磷单晶薄片的基础上(Nat. Commun. 2023, 14, 4398),通过微区显微手段测定了纤维红磷单晶薄片各向异性的反射率,基于Kramers–Kronig方程提取了其在ab平面内的复折射率,并结合DFT计算阐明了巨双折射率(0.642@475 nm)与其准一维结构之间潜在的构效关系。相关的研究成果以“Giant ab-Plane Birefringence in Quasi-1D Fibrous Red Phosphorus”为题,发表在Angewandte Chemie International Edition上。清华大学化学系2021级博士研究生陈武佳为该论文的第一作者。清华大学化学系副教授严清峰为文章的唯一通讯作者。该研究得到了国家自然科学基金项目(No. 21671115 and No. 52072198)的支持。
【核心创新】
1.作者通过Kramers-Kronig方程从纤维红磷单晶薄片的微区反射光谱中成功提取了ab平面的复折射率,并结合理论计算证实了其在可见光波段内存在着高达0.642@475 nm的双折射率,远超目前已有报导的大部分低维材料。
2.研究发现,磷原子相对于其他原子有着较高的电偶极子极化率,有助于单质磷呈现较大的双折射率。在此基础上,作者进一步计算了单质磷中与纤维红磷有着相似结构的紫磷的双折射率,结果表明纤维红磷准一维结构引起的立体化学活性孤对电子(SCALP)的各向异性排布是其具有巨双折射率的根本原因。
3.作者通过理论计算进一步发现纤维红磷存在层数依赖的双折射率变化。通过分析立体化学活性孤对电子,发现随着层数的增加,层间的范德华作用力会引起纤维红磷a轴方向上磷原子周围电子云的畸变,导致电子更加局域,削弱了该方向上的电偶极矩,进而影响双折射率。
【数据概览】
图1 纤维红磷的晶体结构与基本表征
图2 纤维红磷薄片的面内光学特性
图3 KK关系提取得到的纤维红磷的光学常数
图4纤维红磷巨双折射率的潜在机制
图5纤维红磷厚度依赖的折射率与双折射率
参考文献:
Wujia Chen,Bowen Zhang, Kezheng Tao, Qiang Li, Jia-Lin Sun, Qingfeng Yan* ,Giant ab-Plane Birefringence in Quasi-1D Fibrous Red Phosphorus ,Angew. Chem. Int. Ed., 2024, e202403531, DOI: 10.1002/anie.202403531
“本文由新材料在线®平台入驻媒体号高分子科学前沿提供,观点仅代表作者本人,不代表本网站及新材料在线®立场,本站不对文章内容真实性、准确性等负责,尤其不对文中产品有关功能性、效果等提供担保。本站提醒读者,文章仅供学习参考,不构成任何投资及应用建议。如需转载,请联系原作者。如涉及作品内容、版权和其它问题,请与我们联系,我们将在第一时间处理!本站拥有对此声明的最终解释权。”