来源:高分子科学前沿|
发表时间:2024-01-23
点击:2767
自愈合材料被视为一种“有生命”的智能材料,这类材料能够在受到物理损伤后发生自主愈合,以延长材料及器件的使用寿命、提高安全性并减少废弃物对环境的污染。赋予自愈合材料其它高附加值功能,对自愈合材料的进一步应用具有十分重要的意义和应用价值,但是相关研究却相对较少。荧光是物质的一种重要性质,并已广泛应用于各种有机传感器及半导体,在现代生产生活中占据着重要地位。然而,发展具有自愈性质的有机荧光材料仍然是十分有限的。目前仅有的报道通常是依赖于可逆化学相互作用的凝胶或复合材料,通常这类材料具有相对较差的机械强度、耐久性或荧光量子产率。同时,由于这些材料的功能强烈依赖可逆化学键的重构,大多数材料对外部环境(湿度、酸性或碱性等)具有较高的敏感度。因此,开发新方法以合成高性能的自愈荧光聚合物具有较高的科学和实际应用价值,同时具有较高的挑战性。
日本理化学研究所侯召民教授课题组长期致力于稀土金属催化的有机小分子及高分子材料的合成与应用研究(Nature Chem. 2010, 2, 257; Acc. Chem. Res. 2015, 48, 2209)。近年来,该课题组发现半夹心稀土催化剂在非极性和极性烯烃的共聚中展现了独特的活性和选择性,利用稀土催化剂首次实现了乙烯和极性α-烯烃的高度可控共聚,制备了一系列结构新颖、性能独特的功能化聚烯烃及共聚物(Sci. Adv. 2017, 3, e1701011; J. Am. Chem. Soc., 2019, 141, 3249; J. Am. Chem. Soc. 2019, 141, 12624; Angew. Chem., Int. Ed.
基于以上工作,日本理化学研究所侯召民教授与华南理工大学前沿软物质学院王号兵教授合作报道了稀土金属催化的芘基取代苯乙烯(Pyr)、乙烯(E)和苯甲醚基丙烯(AP)三元共聚反应(图1)。通过调整三元共聚物的单体组分,作者可以得到了一系列具有不同分子量和组成的三元共聚物(Mn = 76‒218 kDa, Mw/Mn = 1.4‒6.1, AP: 25.1‒42.4 mol%, E: 57.3‒71.8 mol%, Pyr: 0.1‒3.1 mol%)。进一步的研究表明,这些三元共聚物具有独特的序列调控的微结构,包括相对较长的乙烯-取代丙烯(E‒alt‒AP)片段、孤立的芘基取代苯乙烯(Pyr)单元和较短的聚乙烯(E‒E)片段。
图1 . 稀土金属钪催化的E‒AP‒Pyr三元共聚物的合成
图2. E‒AP‒Pyr三元共聚物 P5 的紫外-可见吸收和荧光性质
随后,作者对这类材料的机械及自愈合性能进行了考察。这类荧光材料展示出区间可控的玻璃转化温度和多种力学性能,包括软材料、弹性体、高强度弹性体和延展性塑料等(图3)。此外,几乎所有三元共聚物都表现出优异的自愈合性能。例如,当将聚合物P5的哑铃形薄膜样品(样品尺寸:1 mm厚,2 mm宽,12 mm长)切成两半并在室温下自愈合时,24小时内就能实现完全的修复(图3C)。与具有相似分子量和抗拉强度的二元乙烯(E)‒苯甲醚基丙烯(AP)共聚物相比,当前的三元共聚物表现出更加优秀的自愈合性能。该自愈合荧光聚合物不仅能够在空气中,而且在水、海水、酸性(1M HCl)和碱性(1M NaOH)环境中也能高效自愈合(图3D),展示了在高度多变的实际环境中潜在的巨大应用价值。
图3. 室温下E‒AP‒Pyr三元共聚物的自愈合和力学性能
对自愈合机理的研究认为,在E‒AP‒Pyr三元共聚物中存在三维物理交联网络,包括由E−alt−AP片段形成的软相,由 Pyr单元聚集形成的硬核微相,以及由E‒E片段形成的半结晶微相(图4)。当机械损伤发生后,通过E−alt−AP软相、Pyr单元形成的硬相,和E−E结晶相的快速重新聚集,将导致三维网络结构的重建以实现损伤的修复。其中,Pyr单元不仅作为高效的荧光物质,而且在三维网络硬相形成和增强聚合物自愈合方面发挥了重要作用,使其相较于类似的二元E−AP共聚物能够实现更加快速的自愈合性能。
图4. E‒AP‒Pyr三元共聚物相分离示意图及其自愈合机制。
此外,作者对该类自愈合荧光聚合物的光诱导环加成反应及光刻信息存储进行了研究。该类聚合物在溶液中能够有效发生光诱导的[2+2]环加成反应。该过程可以通过紫外-可见吸收和荧光光谱进行有效检测(图5)。
图5. 溶液中三元共聚物P5的光诱导可逆环加成反应
图6. P5薄膜样品的光诱导环加成反应及相关物理、力学和自愈合性质的研究
最后,作者对荧光自愈合聚合物应用于光刻及信息存储的可能性进行了研究(图7)。当用一个2D花纹光罩覆盖在P5薄膜上,在405 nm下照射5分钟后,花纹成功地被印在薄膜上。得到的图像在可见光下无法读取信息,但在紫外灯下可以清晰地识别出,展示了独特的信息存储与加密的性能。值得注意的是,该印有花纹的薄膜仍然具有很高的弹性和自愈合能力。
图7. P5薄膜样品光刻及信息存储的研究
以上成果发表在近期的《美国化学学会杂志》期刊上(J. Am. Chem. Soc. 2024, DOI: doi.org/10.1021/jacs.3c12342),文章的通讯作者是日本理化学研究所侯召民主任研究员,西浦正芳专任研究员和华南理工大学王号兵教授,第一作者是日本理化学研究所的黄林博士,该项目受到国家重点研发计划“政府间”重点专项(2022YFE0103800)、自然科学基金面上项目(22171091)等支持。侯召民教授和王号兵教授在日本理化学研究所和华南理工大学长期联合招聘博士后,年薪38万元起,欢迎具有高分子合成背景的优秀博士加入。
封面来源于图虫创意
“本文由新材料在线®平台入驻媒体号高分子科学前沿提供,观点仅代表作者本人,不代表本网站及新材料在线®立场,本站不对文章内容真实性、准确性等负责,尤其不对文中产品有关功能性、效果等提供担保。本站提醒读者,文章仅供学习参考,不构成任何投资及应用建议。如需转载,请联系原作者。如涉及作品内容、版权和其它问题,请与我们联系,我们将在第一时间处理!本站拥有对此声明的最终解释权。”